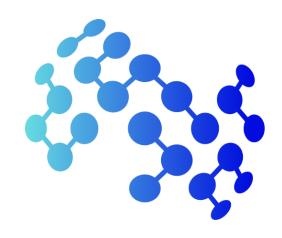


Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models



Somanshu Singla^{1*}, Zhen Wang^{12*}, Tianyang Liu¹, Abdullah Ashfaq¹, Zhiting Hu¹, Eric P. Xing²³ ¹UC San Diego, ²MBZUAI, ³CMU

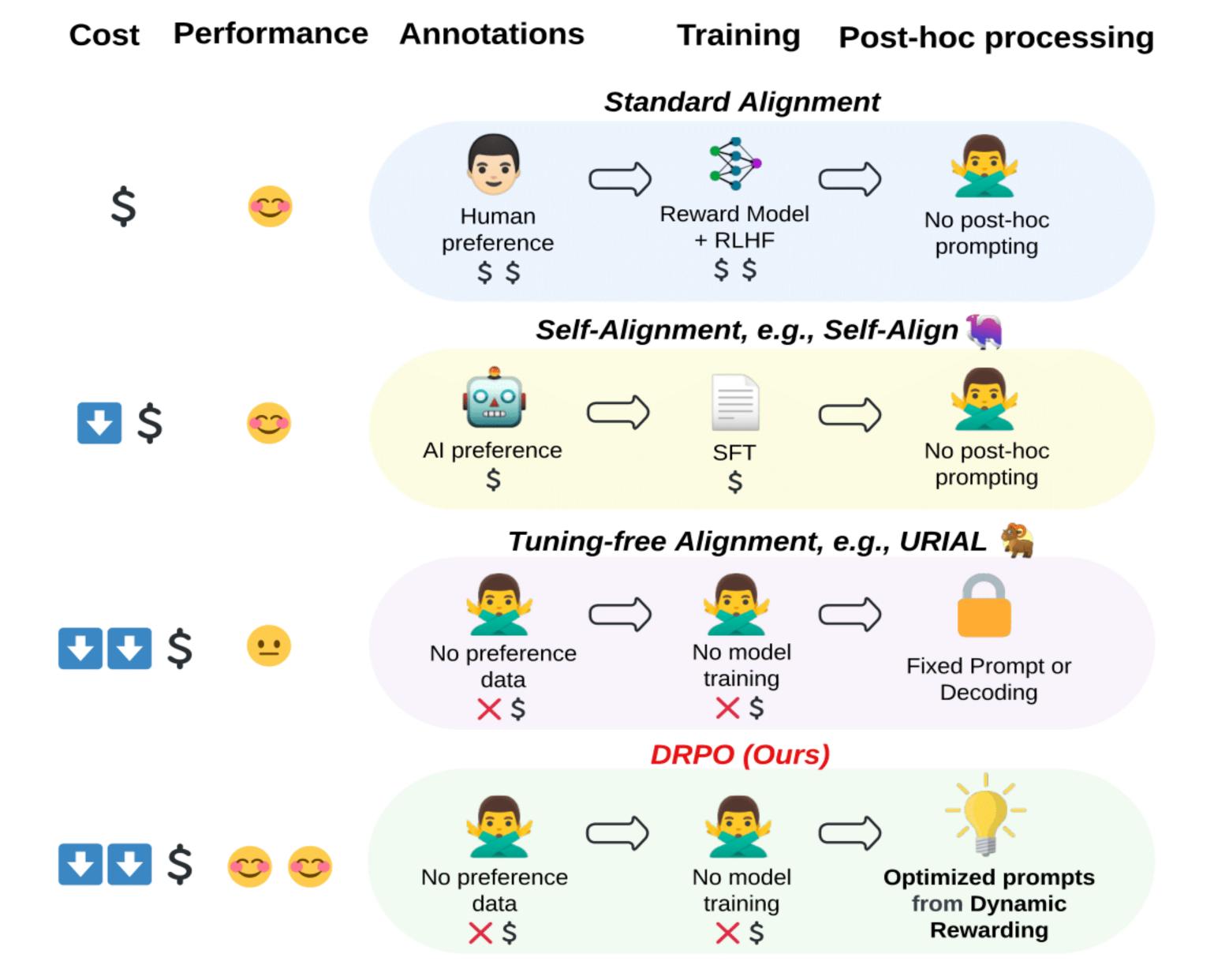
LLM Alignment is expensive

Traditional alignment methods (RLHF/SFT) are:

- Effective and achieve great performance in SoTA LLMs.
- But resource-intensive and need extensive human annotations

We need more cost-efficient and high-performance methods:

- Self-alignment: aligning LLMs by themselves, less annotations
- Tuning-free alignment: inference-time alignment, no training cost



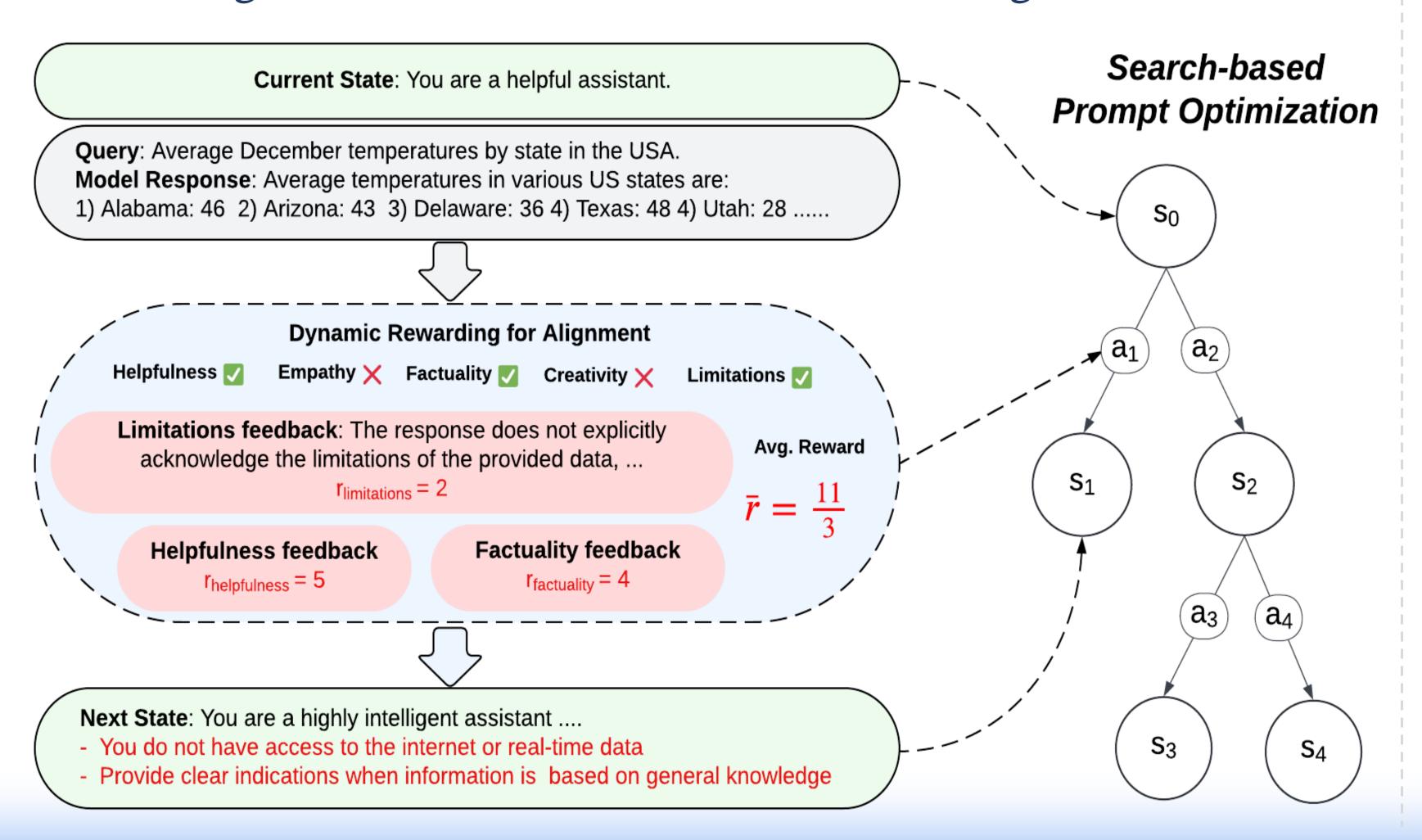
However, self-alignment still requires tuning and some annotations; Tuning-free align. tends to be static, relying on fixed rewards/prompts

DRPO: Tuning-free Self-alignment

Goal: Design a tuning-free self-alignment method without relying on humans, with great generalizability across various LLMs.

Key innovations (check more details in the paper):

- 1. Inference-time optimization with Dynamic Rewarding (DR)
- 2. DR provides dynamic feedback for model-specific alignment
- 3. DRPO generalizes across LLMs with no training and annotations



Superior Alignment Unlocked

1. Superior alignment performance when compared with various RLHF/tuning-free methods on just-eval-instruct benchmark

[Tuned] Model	Method	K	Helpful	Clear	Factual	Deep	Engage	Avg.
[X] Mistral 7b	Base	0	2.20	2.51	2.29	1.69	1.80	2.10
[X] Mistral 7b	URIAL	3	3.62	4.32	3.75	2.70	3.41	3.56
[X] Mistral 7b	DRPO	2	4.23	4.56	3.97	3.68	3.84	4.06
[] Mistral 7b (Instruct)	Base	0	3.98	4.44	3.64	2.97	3.26	3.66
[] Mistral 7b (Instruct)	URIAL	3	3.94	4.51	3.69	2.99	3.75	3.78
[] Mistral 7b (Instruct)	DRPO	2	4.22	4.60	3.80	3.68	3.99	4.06
[X] Llama 2 70b ^q	Base	0	2.07	2.55	2.35	1.50	1.63	2.02
[X] Llama 2 70b ^q	URIAL	3	4.25	4.67	4.03	3.08	3.80	3.97
[X] Llama 2 70b ^q	DRPO	2	4.42	4.72	4.23	3.81	3.98	4.23
[] Llama 2 70bq (chat)	Base	0	4.36	4.71	3.95	3.56	3.76	4.07
[] Llama 2 70b ^q (chat)	URIAL	3	4.32	4.72	4.08	3.50	4.25	4.17
[] Llama 2 70b ^q (chat)	DRPO	2	4.46	4.75	4.10	4.11	4.37	4.36
[X] Llama 3 8b	Base	0	1.82	2.27	2.20	1.38	1.48	1.83
[X] Llama 3 8b	URIAL	3	3.94	4.51	3.69	2.99	3.75	3.78
[X] Llama 3 8b	DRPO	2	4.02	4.40	3.84	3.50	3.65	3.88
[] Llama 3 8b (Instruct)	Base	0	4.43	4.72	3.98	3.45	3.76	4.07
[] Llama 3 8b (Instruct)	URIAL	3	4.48	4.81	4.19	3.55	4.27	4.26
[] Llama 3 8b (Instruct)	DRPO	2	4.54	4.81	4.16	4.08	4.40	4.40
[√] gpt-3.5-turbo	Base	0	4.56	4.89	4.41	3.30	3.55	4.14
[✓] gpt-3.5-turbo	URIAL	3	4.30	4.77	4.41	3.44	4.11	4.21
[✓] gpt-3.5-turbo	DRPO	2	4.67	4.92	4.53	4.07	4.58	4.55
[✓] gpt-4-0613	Base	0	4.71	4.93	4.52	3.49	3.53	4.24

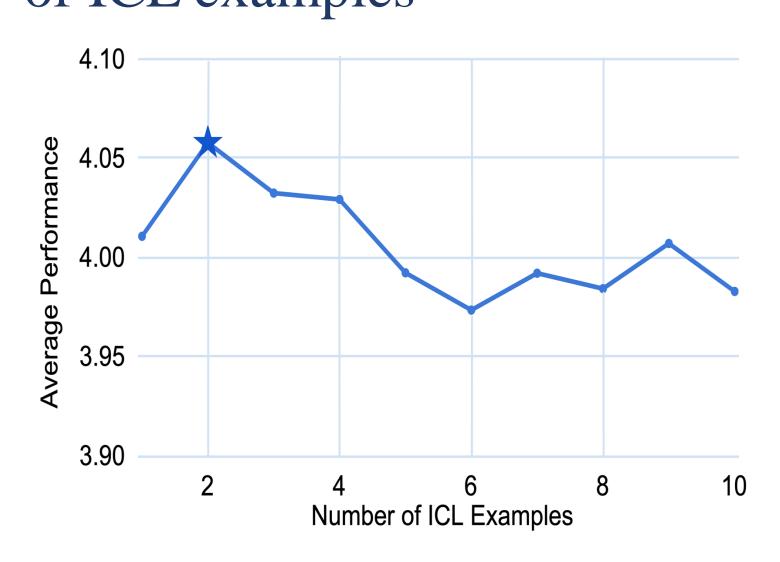
2. Alignment prompt transfer across various base models

Model	Mistral Prompt	Llama Prompt	Base Prompt
Mistral 7b	4.06	4.03	4.04
Llama 2 $70b^q$	4.19	4.23	4.17

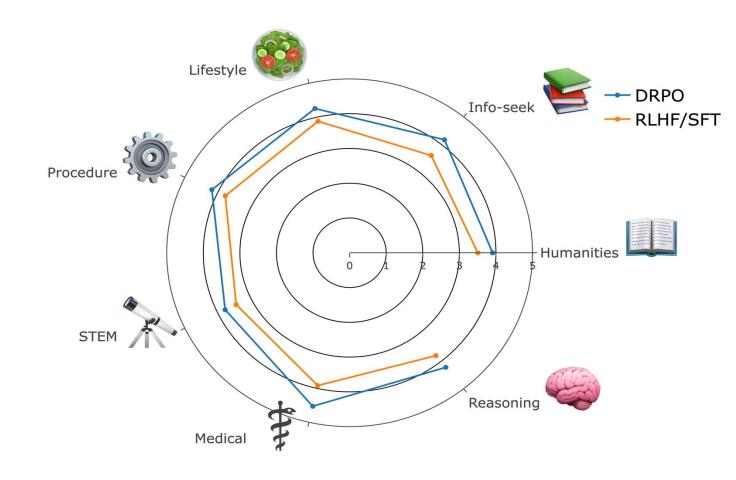
3. Ablation study showing the power of dynamic rewarding

Model	Dynamic Reward Prompt	Dynamic Reward ICL	Avg.
Mistral 7b (Instruct)	✓	✓	4.06
Mistral 7b (Instruct)	X	✓	4.02
Mistral 7b (Instruct)	/	X	3.86

5. Alignment performance of Mistral-7B with varying number of ICL examples



7. Categorized performance Mistral-7B of DRPO compared to RLHF



4. Ablation study showing the importance of both alignment prompt and ICL examples

Model	System Prompt	(K = 2)	Avg.
Mistral 7b	1	/	4.06
Mistral 7b (Instruct)	✓	✓	4.06
Llama 2 $70b^q$	✓	✓	4.23
gpt-3.5-turbo	✓	✓	4.55
Mistral 7b	Х	✓	4.04
Mistral 7b (Instruct)	X	✓	4.04
Llama 2 $70b^q$	X	✓	4.17
gpt-3.5-turbo	X	✓	4.42
Mistral 7b (Instruct)	/	Х	3.67
Llama 2 $70b^q$	✓	X	3.63
gpt-3.5-turbo	✓	X	4.34

6. Optimized alignment prompts, showing model-specific insights (highlighted colors) for gpt-3.5-turbo

As a helpful and ethical assistant, your primary goal is to provide responses that are accurate, engaging, clear, and emotionally resonant across a wide range of queries.

- Strive to make complex topics understandable and emotionally engaging, communicating in a human-like and relatable manner. Organize your responses to enhance readability and emotional connection, avoiding overly technical jargon.

- Always acknowledge the limitations of your knowledge, especially when speculating about historical 'what-ifs', future predictions, or interpreting emotions.

- Aim for a balance between detailed, informative content and a conversational, engaging tone. Incorporate storytelling elements, examples, analogies, and direct questions to make information relatable.

- Avoid overwhelming the user with excessive information; structure your responses to be clear, well-organized, and mindful of the user's cognitive load.

Insights: DRPO identifies modelspecific alignment weaknesses:

- 1. It recognizes that model tends to overcomplicate things.
- 2. Provides actionable insights such storytelling etc.

Road Ahead with DRPO

- DRPO is capable of finding model specific weaknesses and can be utilized towards data efficient alignment.
- Dynamic rewarding will be applied and studied on a wide variety of problems such as Judge Models, Agentic Systems, etc.