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Abstract. With the rapid increase of online videos, recognition and search in 
videos becomes a new trend in multimedia computing. Action recognition in 
videos thus draws intensive research concerns recently. Second, sparse repre-
sentation has become state-of-the-art solution in computer vision because it has 
several advantages for data representation including easy interpretation, quick 
indexing and considerable connection with biological vision. One prominent 
sparse representation algorithm is Laplacian regularized sparse coding (Lapla-
cianSC). However, LaplacianSC biases the results toward a constant and thus 
results in poor generalization. In this paper, we propose Hessian regularized 
sparse coding (HessianSC) for action recognition. In contrast to LaplacianSC, 
HessianSC can well preserve the local geometry and steer the sparse coding 
varying linearly along the manifold of data distribution. We also present a fast 
iterative shrinkage-thresholding algorithm (FISTA) for HessianSC. Extensive 
experiments on human motion database (HMDB51) demonstrate that HessianSC 
significantly outperforms LaplacianSC and the traditional sparse coding algo-
rithm for action recognition.  

Keywords: Action recognition, sparse coding, Hessian regularization, manifold 
learning. 

1 Introduction 

Due to the development of Internet technology and smart devices, explosive growth 
of social videos are produced and spread on the Internet frequently. For example, 
every day YouTube streams more than 1 billion videos most of which are unlabeled. 
It is impractically expensive to manually annotate this huge volume of videos. Thus 
there is an emergent demand for effective methods which can help to organize this 
increasing visual media data including video summarizing, indexing, retrieval, classi-
fication and annotation [1]. And human action recognition is one of the most attractive 
research topic very recently. 

Given an unknown video sequence, human action recognition aims to automatical-
ly classify ongoing actions including gestures, movement, interactions, and group 
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activities. Most action recognition methodologies employ spatio-temporal features to 
describe action in videos by concatenating video frame along time to form a 3-D 
space-time representation [2]. Briefly speaking, it can be divided into three categories: 
(1) action recognition with space-time volumes [3][4]; (2) action recognition with 
space-time trajectories [5][6][7] and (3) action recognition with space-time local fea-
tures [8][9][10][11][12][14][15][16]. The methods with space-time volumes [3][4] 
recognize human actions by measure the similarity between the test video volume and 
template video volume. The methods with space-time trajectories [5][6][7] interpret 
an human action as a set of space-time trajectories which consist of a set of 
2-dimensional or 3-dimensional points corresponding to human joint positions. The 
methods with space-time local features represent and recognize human actions using 
local features extracted from 3-D space-time volumes including concatenation local 
features at every frame [8][9][12][13] or on interest points [10][11][14][15]. 

Considering the redundancy of the space-time features for action representation, it 
is essential to employ a proper representation to reveal the underlying process of these 
observations. Sparse coding has received growing attentions because of its promising 
performance in machine learning, signal processing, neuroscience and statistics. 
Sparse coding aims to learn a dictionary and simultaneously the sparse coordinates 
w.r.t. the dictionary to represent the observations. It yields an easier interpretation 
because each data point is represented as a linear combination of a small set of dic-
tionary atoms. And also sparse coding has some considerable connection with biolog-
ical vision mechanism [17]. Hence a lot of variant algorithms and applications of 
sparse coding have been developed in recent years. In brief, sparse coding algorithms 
can be categorized into the following groups: (1) reconstructive sparse coding 
[18][19][20][21][22], (2) structured sparse coding [23][24][25] and (3) manifold re-
gularized sparse coding [26][27][28][29][30]. Reconstructive sparse coding minimiz-
es the data reconstruction error by different optimization algorithms including match-
ing pursuit [19] and basis pursuit [18]. Structured sparse coding exploits the structure 
sparsity for a certain purpose such as group sparsity [23], hierarchical sparsity [24] 
and latent space [25]. Manifold regularized sparse coding exploits the local geometry 
of the data distribution by graph regularization including graph Laplacian [26][27] 
and Hessian [28][29]. 

In this paper, we propose Hessian regularized sparse coding (HessianSC) for action 
recognition. In contrast to Laplacian, Hessian has richer null space and favors the solu-
tion varying linearly w.r.t. geodesic distance [31]. Then Hessian regularization can better 
preserve the local geometry and lead to better extrapolation capability. Hence, HessianSC 
can achieve smoother sparse coding that preserves local similarity and result more excel-
lent performance than traditional sparse coding algorithms. We also present the fast itera-
tive shrinkage-thresholding algorithm (FISTA) [32] for the optimization of HessianSC. 
In the sense of Nemirovsky and Yudin [33], FISTA is one “optimal” first order method 
for sparse coding [32] with an ܱሺ1 ݇ଶ⁄ ሻ complexity. Finally, we carefully implement 
HessianSC for action recognition and conduct experiments on the HMDB51 database 
[34]. To evaluate the performance of HessianSC, we also compare HessianSC with some 
baseline algorithms including traditional sparse coding and Laplacian regularized sparse 
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coding (LaplacianSC). The experimental results verify the effectiveness of HessianSC by 
comparison with the baseline algorithms. 

The rest of this paper is assigned as follows. Section 2 provide a brief description of 
the proposed Hessian regularized sparse coding (HessianSC) algorithm. Section 3 
introduces the optimization scheme of HessianSC using FISTA. Section 4 reports 
some experimental results followed with conclusions in section 5. 

2 Hessian Regularized Sparse Coding 

Suppose we are given ܰ examples ܵ ൌ ሼݔ௜ሽ௜ୀଵே , sparse coding aims to learn the 
sparse representation ݓ௜  of each example ݔ௜ simultaneously with a dictionary ܦ. In 
the following section of this paper, we use ܺ ൌ ሾݔଵ, ڮ , ேሿݔ א ܴ௠ൈே to denote the 
data matrix of examples and ܹ ൌ ሾݓଵ, ڮ , ேሿݓ א ܴௗൈே to denote the sparse codes 
matrix w.r.t. to the dictionary ܦ ൌ ሾܦଵ, ڮ , ௗሿܦ א ܴ௠ൈௗ. Then sparse coding can be 
formulated as follows: 

                 min஽,ௐ ଵଶே ԡܺ െ ԡிଶܹܦ ൅ ଵߣ ∑ ԡݓ௜ԡଵே௜ୀଵ , s. t. ฮܦ௝ฮଶ ൑ 1, 1 ൑ ݆ ൑ ݀. (1) 

Under manifold assumption [35], it is crucial to explore the local geometry because 
the sparse codes ݓ௜ ௝ݓ ,  of two examples ݔ௜ and ݔ௝ respectively are close to each 
other if the two examples are close in the intrinsic geometry of the data distribution. 
Hence in this paper, we integrate Hessian regularization into the objective function of 
sparse coding and reformulate HessianSC as below: 

min஽,ௐ ଵଶே ԡܺ െ ԡிଶܹܦ ൅ ଵߣ ∑ ԡݓ௜ԡଵே௜ୀଵ ൅ ሻ்ܹܪሺܹݎଶܶߣ , s. t. ฮܦ௝ฮଶ ൑ 1, 1 ൑ ݆ ൑ ݀.
 (2) 

Here ܪ is the Hessian computed from the data matrix. 
The objective function in (2) is convex w.r.t. ܦ or ܹ separately, but it is not 

convex w.r.t. both variables together. In this paper, we employ alternating optimiza-
tion to solve the problem by optimizing one variable while keeping the other one 
fixed. Thus the solution of (2) can be generally divided into two parts: sparse coding 
and dictionary updating. In the following section, we detail the optimization algorithm 
of (2). 

3 Optimization of HessianSC 

The optimization of HessianSC contains two steps: (1) learning sparse codes ܹ 
given fixed dictionary ܦ and (2) updating dictionary ܦ given fixed sparse codes ܹ. In particular, given fixed dictionary ܦ, the problem (2) can be written as the fol-
low subproblem: 
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                              minௐ ଵଶே ԡܺ െ ԡிଶܹܦ ൅ ଵߣ ∑ ԡݓ௜ԡଵே௜ୀଵ ൅  ሻ. (3)்ܹܪሺܹݎଶܶߣ

Given fixed sparse codes ܹ, the problem (2) can be written as the follow sub-
problem:                                              min஽ ଵଶே ԡܺ െ ԡிଶܹܦ , s. t. ฮܦ௝ฮଶ ൑ 1, 1 ൑ ݆ ൑ ݀. (4) 

In the following, we present the optimization of subproblem (3) and (4) in detail. 

3.1 Learning Sparse Codes ࢃ with Fixed ࡰ 

In this section, we describe the optimization of subproblem (3) using FISTA [32]. 
Subproblem (3) can be expressed as the general form: minௐሼܨሺܹሻ ؠ ݂ሺܹሻ ൅ ݃ሺܹሻሽ,                   (5)  

where ݂ሺܹሻ ൌ ଵଶே ԡܺ െ ԡிଶܹܦ ൅ ሻ்ܹܪሺܹݎଶܶߣ , ݃ሺܹሻ ൌ ଵߣ ∑ ԡݓ௜ԡଵே௜ୀଵ . ݂ሺܹሻ 
and ݃ሺܹሻ are both convex functions.  

Adopting gradient algorithm, subproblem (5) leads to the iterative scheme:      ௞ܹ ൌ argminௐ ቄܳ௅ሺܹ, ௞ܹିଵሻ ؠ ݂ሺ ௞ܹିଵሻ ൅ ܹۃ െ ௞ܹିଵ, ሺ݂׏ ௞ܹିଵሻۄ ൅ ௅ଶ ԡܹ െ ௞ܹିଵԡଶ ൅ ଵߣ ∑ ԡݓ௜ԡଵே௜ୀଵ ቅ (6) 

where ܣۃ, ۄܤ ൌ  Ignoring constant .݂׏ is the Lipschitz constant of ܮ ሻ, andܤ்ܣሺݎܶ
terms, (6) can be rewritten as: 

௞ܹ ൌ ௅ሺ݌ ௞ܹିଵሻ ؠ argminௐ ቊ௅ଶ ቛܹ െ ൬ ௞ܹିଵ െ ଵ௅ ሺ݂׏ ௞ܹିଵሻ൰ቛଶ ൅ ଵߣ ∑ ԡݓ௜ԡଵே௜ୀଵ ቋ.  

(7) 

Since ݈ଵ norm is separable, subproblem (7) can then be solved using the shrinkage 
operator as follows: ݓ௜ ൌ ഊ࣮భಽ ൬ݓ௞ିଵ െ ଵ௅  ,௞ିଵሻ൰ݓሺ݂׏

where ఈ࣮ሺݔሻ௝ ൌ ൫หݔ௝ห െ  .௝൯ݔ൫݊݃ݏ൯ାߙ
Then we can state the optimization of subproblem (3) using FISTA with back-

tracking stepsize in Table 1. 

3.2 Update Dictionary ࡰ with Fixed ࢃ 

Subproblem (4) is a ݈ଶ-constrained least squares problem and can be equally rewritten as:                                    min஽ԡܺ െ ԡிଶܹܦ , s. t. ฮܦ௝ฮଶ ൑ 1, 1 ൑ ݆ ൑ ݀ (8) 

In this section, we describe the optimization of (8) using Largrange dual [36].  
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Table 1. FISTA optimization for subproblem (3) 

─ Input: ܺ, ,ܦ ,ܪ ,ଵߣ  ଶߣ
─ Output: ܹ 
─ Step 0: chose ଴ܹ, ܼଵ ൌ ଴ܹ, ,଴ܮ ߟ ൐ 1, ଵݐ ൌ 1  
─ Step k:  
─ 1. set ܮത ൌ  ௞ିଵܮ
─ 2. repeat ܮത ൌ ௅ത݌൫ܨ ത, untilܮߟ ሺܼ௞ሻ൯ ൑ ܳ௅ത ሺ݌௅ത ሺܼ௞ሻ, ܼ௞ሻ 
─ 3. set ܮ௞ ൌ  തܮ
─ 4. update 
─   ௞ܹ ൌ  ௅ೖሺܼ௞ሻ݌
௞ାଵݐ   ─ ൌ ଵାටଵାସ௧ೖమଶ  
─   ܼ௞ାଵ ൌ ௞ܹ ൅ ቀ௧ೖିଵ௧ೖశభቁ ሺ ௞ܹ െ ௞ܹିଵሻ 

Consider ߚ ൌ ሾߚଵ, ڮ ,  ௗሿ as the Lagrange multiplier, the Lagrange dual functionߚ

of subproblem (8) can be written as follows: 

݃ሺߚሻ ൌ min஽ ࣦሺܦ, ሻߚ ൌ min஽ ԡܺ െ ԡிଶܹܦ ൅ ෍ ௝்ܦ௝൫ߚ ௝ܦ െ 1൯ௗ
௝ୀଵ  

ൌ min஽ ൫ሺܺݎܶ െ ሻ்ሺܹܺܦ െ ሻ൯ܹܦ ൅ ሻ߀ܦ்ܦሺݎܶ െ  ሻܤሺݎܶ

ൌ min஽ ሺ்ܺܺݎܶ െ ்்ܹܺܦ2 ൅ ܹܦ்ܦ்ܹ ൅ ߀ܦ்ܦ െ  ሻ                     (9)ܤ

where ܤ ൌ ݀݅ܽ݃ሺߚሻ is ݀ ൈ ݀ diagonal matrix with diagonal entry ܤ௝௝ ൌ  .݆ ௝ for allߚ

Set the first order derivative of ࣦሺܦ,   to zero, we have ܦ .ሻ w.r.tߚ

்ܹܹכܦ         െ ்ܹܺ ൅ ܤכܦ ൌ 0. 

Then, we have כܦ ൌ ்ܹܺሺ்ܹܹ ൅  ሻିଵ.                 (10)ܤ

Substituting (10) into (9), the Lagrange dual of subproblem (4) can be written as: ݃ሺߚሻ ൌ ሺ்ܺܺݎܶ െ ்ܹܺሺ்ܹܹ ൅ ሻିଵ்ܹܺܤ െ  ሻ.            (11)ܤ

After solving the maximization of (11) w.r.t ߚ by using Newton’s method, we 

obtain the optimal dictionary כܦ as כܦ ൌ ்ܹܺሺ்ܹܹ ൅  .ሻିଵכܤ

4 Experiments 

To evaluate the effectiveness of the proposed HessianSC, we apply support vector ma-
chines as classifier to the sparse codes obtained by HessianSC for action recognition. 
We conduct the experiments on the HMBD51 database [1]. HMDB51 contains 6849 
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5 Conclusion 

Human action recognition have received intensive research attentions with the explo-
sively growing of online videos. Although there are a lot of action representation 
methods, sparse coding has achieved stat-of-the-art performance in many computer 
vision applications. In this paper, we employed Hessian regularized sparse coding for 
human action recognition. The proposed HessianSC can well preserve local similarity 
benefitting from Hessian regularization. We also present a fast iterative shrinkage 
thresholding algorithm (FISTA) for efficient solving HessianSC. We apply HessianSC 
to support vector machines for action recognition. Extensive experiments on the 
HMBD51 database demonstrate that the proposed HessianSC significantly outper-
forms LaplacianSC and the traditional sparse coding algorithm for action recognition. 
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